Assessment of cigarette smoke particle deposition within the Vitrocell® exposure module using quartz crystal microbalances
نویسندگان
چکیده
BACKGROUND Cigarette smoking is a cause of a variety of serious diseases, and to understand the toxicological impact of tobacco smoke in vitro, whole smoke exposure systems can be used. One of the main challenges of the different whole smoke exposure systems that are commercially available is that they dilute and deliver smoke in different ways, limiting/restricting the cross-comparison of biological responses. This is where dosimetry - dose quantification - can play a key role in data comparison. Quartz crystal microbalance (QCM) technology has been put forward as one such tool to quantify smoke particle deposition in vitro, in real-time. RESULTS Using four identical QCMs, installed into the Vitrocell® mammalian 6/4 CF Stainless exposure module, we were able to quantify deposited smoke particle deposition, generated and diluted by a Vitrocell® VC 10 Smoking Robot. At diluting airflows 0.5-4.0 L/min and vacuum flow rate 5 ml/min/well through the exposure module, mean particle deposition was in the range 8.65 ± 1.51 μg/cm(2)-0.72 ± 0.13 μg/cm(2). Additionally, the effect of varying vacuum flow rate on particle deposition was assessed from 5 ml/min/well - 100 ml/min/well. Mean deposited mass for all four airflows tested per vacuum decreased as vacuum rate was increased: mean deposition was 3.79, 2.75, 1.56 and 1.09 μg/cm(2) at vacuum rates of 5, 10, 50 and 100 ml/min/well respectively. CONCLUSIONS QCMs within the Vitrocell® exposure module have demonstrated applicability at defining particle dose ranges at various experimental conditions. This tool will prove useful for users of the Vitrocell® system for dose-response determination and QC purposes.
منابع مشابه
Characterization of the Vitrocell® 24/48 in vitro aerosol exposure system using mainstream cigarette smoke
BACKGROUND Only a few exposure systems are presently available that enable cigarette smoke exposure of living cells at the air-liquid interface, of which one of the most versatile is the Vitrocell® system (Vitrocell® Systems GmbH). To assess its performance and optimize the exposure conditions, we characterized a Vitrocell® 24/48 system connected to a 30-port carousel smoking machine. The Vitro...
متن کاملThe assessment of H2AX induction from conventional and electronic cigarette aerosols
Exposure systems have been used to assess cigarette smoke aerosols for many years, using a variety of invitro endpoints. These systems produce a more physiologically relevant test matrix compared to traditionalmethods, and as a result in vitro aerosol techniques are widely being developed. Of particular interest aregenotoxicity assays such as the H2AX assay which may be used to dete...
متن کاملApplication of dosimetry tools for the assessment of e-cigarette aerosol and cigarette smoke generated on two different in vitro exposure systems
The diluted aerosols from a cigarette (3R4F) and an e-cigarette (Vype ePen) were compared in two commercially available in vitro exposure systems: the Borgwaldt RM20S and Vitrocell VC10. Dosimetry was assessed by measuring deposited aerosol mass in the exposure chambers via quartz crystal microbalances, followed by quantification of deposited nicotine on their surface. The two exposure systems ...
متن کاملReal-time assessment of cigarette smoke particle deposition in vitro
BACKGROUND Recently there has been a rapid increase in approaches to assess the effects of cigarette smoke in vitro. Despite a range of gravimetric and chemical methods, there is a requirement to identify simpler and more reliable methods to quantify in vitro whole smoke dose, to support extrapolation and comparisons to human/in vivo dose. We have previously characterised an in vitro exposure s...
متن کاملQuantification of Cigarette Smoke Particle Deposition In Vitro Using a Triplicate Quartz Crystal Microbalance Exposure Chamber
There are a variety of smoke exposure systems available to the tobacco industry and respiratory toxicology research groups, each with their own way of diluting/delivering smoke to cell cultures. Thus a simple technique to measure dose in vitro needs to be utilised. Dosimetry-assessment of dose-is a key element in linking the biological effects of smoke generated by various exposure systems. Mic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2013